Inviscid oscillations of bubbles and drops

+ Oscillations of a bubble in surfactant solutions

+ Rebound of a bubble from a solid in surfactants
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Motivation

Bubble rebound from a solid surface is suppressed, if a surfactant is present.

Left: Right:
1 mm bubble 1 mm bubble
pure water water + surfactant
=72 mN/m 0=62 mN/m

ADSA: "used surfactant does not seem to be a surfactant"
Bubble pressure tensiometry: Some dependence of the surface tension on the age
How to predict this and similar processes?



Motivation

Shape oscillations are strongly affected by
presence of surfactants.

Possible enlargement of drop-shape-
analysis (ADSA) methods.

Oscillations of attached bubble (D =1.2 mm)
in pure water in surfactant solution
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Inviscid analyses

Experiments:

Results in surfactant solution are compared
with those obtained in pure liquid.

The difference is considered as a

consequence of surfactant effects.

Can we predict the case of pure liquid
o« without doing experiments?

pure liquid
reference case

surfactant solution
tested case




Inviscid analyses

Available analyses:

Strani & Sabetta (JFM 1984) «

(inviscid) /

Bostwick & Steen (PoF 2009)
(inviscid) T~
/

Present analysis:

- inviscid (irrotational flow)
- linear (small amplitudes)
- no gravity (spherical shape)

Advantages:
- straightforward and convenient

- adapts easily to any constrain
- response to support motion or to volume variations



Inviscid analysis — shape description

Deviation from a sphere:
n(t,6)

This deformation is decomposed in series

n(t,0) = bﬂ(t)lPO(cosé’) +|b,(t iPl(cosé’) - bz(t)Fz(cosﬁ) + ...

(P,’s are Legendre polynomials)

- the shape is described boefficients




Inviscid analysis - constraints

The deformation is decomposed in series
n(t,0) = bo(t)!Po(cosﬁ) + bl(t]Pl(cosé’) +|b,(t)P,(cosO) + ...

Because of attachment, bj‘s are not independent.

Constraints:

N .
- 5 _ prescribed _
g(b,.b,, .b.J) _;bﬂ (cos6,) - P =2 G 0

All these constrains can be expressed in a similar way:
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Inviscid analysis - energies

The deformation is decomposed in series

For this decomposition
potential (surface) energy is
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irrotational velocity field is assumed (it is known)
kinetic energy of the flow is

N
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energy dissipation rate is
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- system of ODE’s for bj coefficients can be obtained using variational methods

n(t,0) = b,(t)P,(cosd) +|b,(t)P,(cosO) + |b,(t)P,(cosh) + ...



Inviscid analysis — ODEs for shape

The deformation is decomposed in series
n(t,0) = b,(t)P,(cosd) +|b,(t)P,(cosO) + |b,(t)P,(cosh) + ...

- Equations for b; can be obtained via Lagrange’s equations
—> constraints taken in account by method of Lagrange A-multipliers

d{oT | or ob oV N9,
— |- + 1+ = )45
dt\ db,|) ab, db,| ab,| (= b,

Resulting equations:
(pl- 1 a1 JB"+2 ﬂoz(ﬂ;']_.1+ﬂe].+2ij+
po J(2j+1) p, (J+1)(2j+1) PR\ Ty J+1

-2 : M
+ 03[] +_] Zij— 1 e P,(cos@,,) = 0
PR 2j+1 47p R i

o

N .

prescribed
Z;bij(cosQa) = 0
5=

motion B



Inviscid analysis — ODEs for shape

n(t,0) =

d

dt

d°b

or | or ob oV
— | =+ 1+
ab.|| ab.| ab.| ab,

/ / / ]

The deformation is decomposed in series
bo(t)!PO(cosﬁ) + bl(t]Pl(cosé’) +|b,(t)P,(cosO) + ...

- Equations for b; can be obtained via Lagrange’s equations
—> constraints taken in account by method of Lagrange A-multipliers

M

vector of b;and A,

“mass” matrix
(diagonal)

“damping” matrix

“rigidity” matrix
(sparse)

(diagonal)

forcing vector
(non-zero, if support
moves or volume changes)




Inviscid analysis — summary

Resu

“mass”
(diag

Analysis — main features:

Bubble shape is decomposed in
n(t,0) =\b,(t)P,(cos@) +|b,(t)P,(cosO) + b,(t)P,(cosO) + ...

Ordinary differential equations for bj coefficients are then obtained
by computing energies and by application of Lagrange's equation
and Lagrange multipliers.

Advantages:
- analysis easily adapts to any constraints
- analysis allows computing response to
- support motion
- volume variations

Drawbacks:
- no gravity effects (only spherical basic shape)
- inviscid = cannot handle surfactants

Phys Fluids 25 (2013) 062102
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Pure liquid, experimental protocol

Decomposition of the experimental shape:

n(t,0) =|b,(t)F,(cos@) + | b,(t)P,(cosd) + b,(t)P,(cosb) + ...

.. evolution of bj coefficients is obtained experimentally...
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Pure liquid, experimental protocol

mode 1

bubble (0.93 mm) at 250 pum capillary
forced at 250 Hz
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Pure liquid: frequency transfer function

n(t,0) =

(response to motion of bubble support)

bo(t)!PO(cosé’) +|

b, (t !Pl(cosé?) +

bz(t)h(cos(?) + ...

dimensionless frequency (of motion of bubble support)



dimensionless frequency
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Pure liquid: eigenmode frequency

mode 3

mode 2
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dimensionless frequency
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Pure liquid: eigenmode frequency

mode 3

mode 2
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Pure liquid: eigenmode frequency
(normalized by wavelength)
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Pure liquid: eigenmode shape (mode?2)

lj‘:l n(t,0) = bo(t)lFo(COS‘f?) +|b,(t ipl(COSQ) - bz(t)}Dz(cosé?) ¥ ...
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dimensionless damping

Pure liguid: eigenmode damping rate
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bubble size: 1.18 — 1.20 mm

Oscillations in surfactant solutions

Bubble oscillations are suppressed, if a surfactant is present. Frequency is modified.

pure water water + a-terpineol water + a-terpineol water + a-terpineol
¢ =0.4 mmol/| c=0.7 mmol/I c=2.1 mmol/I
(62 mg/l) (108 mg/I) (323 mg/I)

0=72mN/m 0=67 mN/m o =64 mN/m 0=56 mN/m



. oscillation frequency

Effect of surfactants

results for a-terpineol
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oscillation frequency, normalized by
frequency observed in pure liquid

Effect of surfactants: oscillation frequency

results for a-terpineol
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oscillation frequency, normalized by
frequency observed in pure liquid

Effect of surfactants: oscillation frequency

results for a-terpineol

Wik | |
Wpure : : similar observations with a free bubble:
- (A I Asaki, Thiessen & Marston, PRL 1995
1.1} A CA) 10 |
i 10 o I
i . 8 < | ® |
L 2 | | o)
LOg I s | mode 3 BE—
N I o I O-pure
- I I
0.9 ' :
i | | 8 3
i : : mode 2 ©
0.8 I o8 ! ‘. o
X I A
i | A Q: O. 8 8 © 6
I I I
o7l | | mode 1 !
i Q
i I I
i I I
- I I
0.6 | |
I I
i I I
0.5 L1 N - L L ¢ [mmol/l]
0.0 051 1.G 1.5 2.0 2.5
R - J surfactant concentration



Effect of surfactants: oscillation damping

decay time = 1/damping

decay time, normalized by decay

time observed in pure liquid
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Effect of surfactants: oscillation damping

decay time = 1/damping

decay time, normalized by decay

time observed in pure liquid

results for a-terpineol

é'purc,k | I
ke I I
1.2 I I
I I
I I
i I I
1.0 I I
mode 3 | I
I I
I I
0.8 I I
I o I I
(o)
- o0° :
061 mode 2 | |
i I I
© I I
w8090 l
Tl A o lo I
| g |
A0 o |
0.2} ! I o) R & v
1A O A° ‘l d 1
I I mode
, 0A © I
0.0 L— e = Lo L w1 ¢ [mmol/l]
0.0 0.51 1.G 1.5 2.0 2.5
L e = ! surfactant concentration



Effect of surfactants: oscillation damping

decay time, normalized by decay

decay time = 1/dampin L results for a-terpineol
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decay time = 1/damping

decay time, normalized by decay

time observed in pure liquid

Effect of surfactants: oscillation damping

results for a-terpineol
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oscillation frequency, normalized by
frequency observed in pure liquid

Effect of surfactants: oscillation frequency

results for Triton X-100
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decay time = 1/damping

decay time, normalized by decay

time observed in pure liquid

Effect of surfactants: oscillation damping
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Effect of surfactants: oscillation damping

decay time = 1/damping

decay time, normalized by decay

time observed in pure liquid
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Effect of surfactants: oscillation damping

results for Triton X-45

= 1/damping

decay time
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Bubble rebound from a solid surface

Bubble rebound from a solid surface is suppressed, if a surfactant is present.

m |

Left: Right:
1 mm bubble 1 mm bubble
pure water water + surfactant

=72 mN/m 0=62 mN/m




Bubble rebound from a solid surface

Bubble rebound from a solid surface is suppressed, if a surfactant is present.

restitution coefficient: v,/v,
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Bubble rebound from a solid surface

Bubble rebound from a solid surface is suppressed, if a surfactant is present.
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Shape oscillations: Increase of the damping rate due to surfactant

The restitution coefficient correlates with the change of damping rate of oscillations.
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Surfactants & freely-rising bubble

Bubble oscillations are suppressed, if a surfactant is present.

pure water water + terpineol water + terpineol

0=72 mN/m o =64 mN/m 0=61 mN/m
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Surfactants & freely-rising bubble

A decrease of frequency and maximum damping is again observed
e Large bubbles: The decay time can initially increase with the addition of the surfactants
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THAT'S ALL. Let us summarize.




Summary

Shape oscillations in pure liquid:

- inviscid analysis that allows to take in account any constrains,
including support motion and volume variations

- deformation by gravity leads to a decrease of eigenmode frequencies
- perspective: analysis for bubbles/drops deformed by gravity

Shape oscillations in surfactant solution:

- frequency initially increases, as a surfactant is added, then frequency
drops down

- maximum damping occurs at the same concentration as the
frequency drop

- more complex behavior for rising bubbles

Rebound of bubbles from a solid surface:

- surfactant effect on the restitution coefficient is well correlated by
the increase of damping rate of bubble oscillations
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