

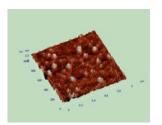
Research Team name: Technology Research Center Laboratory, Selcuk University

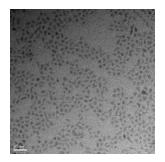
Presenter name: Prof. Dr. Mustafa Ersoz

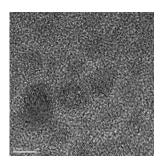
Research Team Name: **Technology Research Center Laboratory, S.U.**

Number of team members: 20

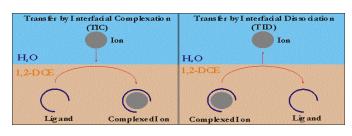
Brief description of team: studies, expertise, etc:

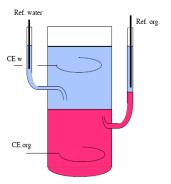

Team leader: Mustafa Ersoz, Prof. Physical Chemistry

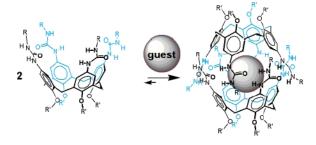

- 1 Assoc. Prof.
- 2 Assistant Prof.
- 3 Post doctoral fellow
- 6 Ph.D. students
- 8 M.SC. student


Research interests related to MP1106 (please use bullets):

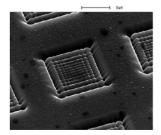
✓Nanoengineered nanoparticles and Quantum dots for sensor

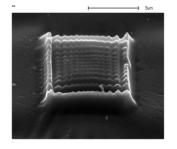


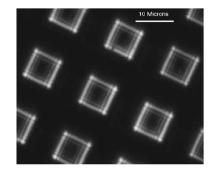




✓Electrochemistry at interfaces

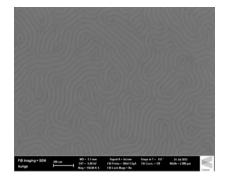

✓Micro ITIES for sensors

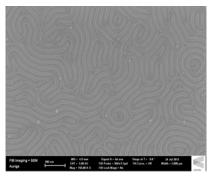




Patterning (hydrophilic /hyrdophobic areas) on the

surfaces





✓Chemical and physical (morphological) design of solid surfaces.

✓ Manufacturing of patterned and structured surfaces, deposition, etching or other contemporary techniques.

✓Development of smart nanostructured interfaces

Basic facilities, equipment, devices etc

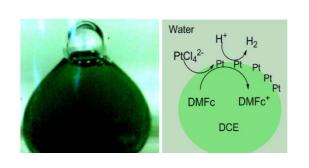
INFRASTRUCTURES & EQUIPMENT		
Nanotechnology		Biotechnology
√	SEM (TEM for life sciences)	✓ Cell culture facilities (sterile)
✓	ESR	cabin, incubators, microscopes,
✓	NMR	ELISA reader, centrifuge etc.)
✓	XRD (GiSAXS)	✓ Microbial biotechnology
✓	Femtosecond Laser-TOF system	laboratory (5L bioreactor, sterile
✓	ICP-MS (Laser ablation)	cabin, incubators, shakers,
✓	AFM-SNOM	centrifuge etc.)
✓	X-ray, fluorescence.	✓ Molecular genetics laboratory
✓	Contact angle, LB film	(RT-PCR, electrophoresis and gel
✓	FTIR, UV-Vis	analysis systems, bioanalyzer,
✓	Chromatography (HPCL, GPC., GC-MS, IC)	nanodrop)
✓	Thermal Analysis (DSC, TGA, DTA)	✓ Bioactive compound
✓	Submicron Particle Analyzer.	preparation laboratory
✓	Thin films laboratory	(ultrasonicator, homogenizator,
✓	Glove box (2 chambers able to work 8	freeze dryer, vacuum centrifuge)
pe	rson, including for the all necessary	✓ Fluorescent technology (Flow)
conditions)		cytometer/ cell sorter, fluorescent
✓	Solar Energy laboratory	spectrophotometer, fluorescent
		microscope)

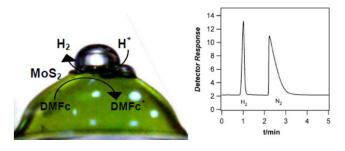
Research Areas;

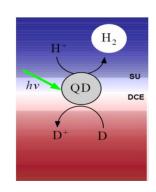
- ✓Nanotechnology (synthesis, patterning, functionalisation, surface treatment and characterization of nanoparticles).
- ✓Synthesis of block copolymers
- ✓Synthesis of organic semiconductors such as perylene and naphthalene derivatives and their application in organic electronics, dye sensitized solar cells, organic and hybrid light emittin diodes,
- ✓Synthesis of nanoparticles, magnetic nanoparticles for different applications
- ✓Membrane technology (supported, activated and composite membranes, preparation and applications, UF/NF/RO processes and applications)
- ✓Electrochemistry at interfaces
- ✓Film preparation and composite processing : spin coating, doctor blade, Langmuir techniques, layer-by-layer assembly, electrodeposition

#1 project:

Title: Nanoparticles-Based Hydrogen Generation at Water and Water/1,2- Dichloroethane (DCE) Interfaces


Duration: 36 months


Funding organization: TUBITAK (Turkish Research and Technological Council)


People involved and their function (*PhDs, postdocs, technicians etc*): Prof. M. Ersoz, Dr. I. Hatay Patır, 2 PhD student

Facilities/equipment (*if not mentioned in Basics; may add photo*): Cyclic Voltammetry, AFM, GC, Glove box. Etc.

Most interesting results (1 or 2 plots max): to produce hydrogen at water and water/DCE interfaces using synthesized semiconductor nanoparticles as catalysts.

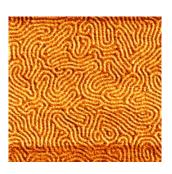
#2 project :

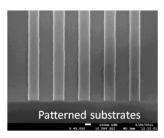
Title: Large Area Molecularly Assembled Nanopattern for Devices

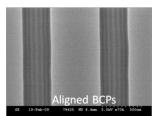
Duration: 36 months

Funding organization: FP7-NMP

People involved and their function (*PhDs, postdocs, technicians etc*):


Prof. M. Ersoz, Dr. M. Kus, Dr. G. Arslan, Dr. I.H. Gubbuk, 2 PhD student


Facilities/equipment (if not mentioned in Basics; may add photo):


AFM, XRD-GISAXS, SEM and sythesis laboratory equipments, GPC etc.

Most interesting results (1 or 2 plots max):

- WP leader, Nanometrology development for self assembled structures
- Synthesis of BCPs and derivatives

#3 project:

Title: Investigation of colloidal and electrorheological responses of core/shell hybrid nano-structured and self assembled PEDOT on surface modified titanium dioxide having various geometries

Duration: 36 months

Funding organization: TUBITAK (Turkish Research and Technological Council)

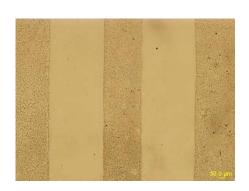
People involved and their function (*PhDs, postdocs, technicians etc*):

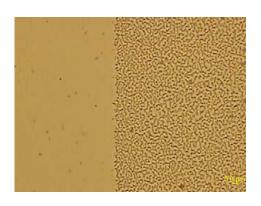
Prof. H.I. Unal, Prof. M. Ersoz, 2 PhD student

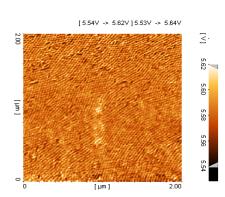
Facilities/equipment (if not mentioned in Basics; may add photo): AFM, XRD-GISAXS, SEM and sythesis laboratory equipments, GPC etc. Most interesting results (1 or 2 plots max):

$$\begin{array}{c} \text{TiO}_2\\ \downarrow^{\text{H}_3\text{CO}_4}\\ \downarrow^{\text{H}_2\text{O}_2}\\ \text{TiO}_2 - \text{OH} \\ \downarrow^{\text{H}_3\text{OH}}\\ \downarrow$$

#4 project:


Title: Selective Formation of Colloidal Particles Array on the Surfaces and Applications


Duration: 36 months


Funding organization: TUBITAK

People involved and their function (*PhDs, postdocs, technicians etc*): Prof. M. Ersoz, Dr. I. Hatay Patır, Dr. I.H. Gubbuk, Dr. G. Arslan and 3 PhD student

Facilities/equipment (if not mentioned in Basics; may add photo): Most interesting results (1 or 2 plots max):

#5 project :

Title: The European SOLAR Research Infrastructure for Concentrating Solar Power

Duration: 48 months

Funding organization: FP7-ESFRI

People involved and their function (*PhDs, postdocs, technicians etc*): **Prof. M. Ersoz, Dr. Mahmut Kus, Dr. I. Hatay Patir**

Facilities/equipment (if not mentioned in Basics; may add photo):

Most interesting results (1 or 2 plots max):

Konya Region is already approved as the energy industrial zone Expected to be energy center and investment of many international Energy leaders in the near future.

Topics for Research Proposal The following topics under FP7-NMP 2013 Call,

NMP.2013.1.1-2 Self-assembly of naturally occurring nanosystems -developing of nano-, micro-, and macro-scale polymer composites

NMP.2013.1.2-1 Nanotechnology-based sensors for environmental monitoring

NMP.2013.1.3-1 Safety in nanoscale production and products

NMP.2013.2.1-1 Developing new precursors, new processing routes and functionalisations for carbon fibres

FoF.NMP.2013-10 Manufacturing processes for products made of composites or engineered metallic materials

NMP.2013.1.3-3 Development of a systematic framework for naming and assessing safety of the next generations of nanomaterials being developed for industrial applications

Thank you for attention